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Expectation maximization (EM) (Dempster et al., 1977) is designed
for maximum likelihood estimation of parameters in probabilistic models
with missing data or hidden variables.

Let {x,,} denote the set of observed data, and {z,,} the set of hidden

data. We want to maximize the likelihood w.r.t. the observed data:

arg max Z logp(x,,|0)
o o

= arg max 1og(/p z,, 2,0 dzn>,
! ; ( 0)

where p(x|0) is known as the incomplete-data likelihood, and p(x, z|0)
is known as the complete-data likelihood.

Evidence Lower Bound
Unfortunately, this maximization is generally intractable, because of the
log [ p(x, z|0) dz term.

We can bypass the intractability by transforming log p(x|60) as follows:
logp(]6) = Eq()[log p(z6)]
= Eq(z) [log(p(m, z|9)/p(z\a:, 0))]

x, z|0
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where # (q(z), 0) is known as the evidence lower bound (ELBO). We have
F(q(2),0) <logp(|0)

for any ¢(z) and 0, with equality holding iff ¢(z) = p(z|x, 6).

The EM algorithm then maximizes logp(x|@) by instead maximizing
the lower bound & (q(z), 0) iteratively. For each iteration ¢, we perform
coordinate ascent on F (q(z), ) alternating between ¢(z) and 6.
+ In the E-step, we maximize F (¢(z), 0) with 8 = 0, fixed:
4(2) = arg(n;ax F(q(2),6,) = p(z[x,6,).
q\z
+ In the M-step, we maximize 7 (q(z), 0) with ¢(z) = ¢,(z) fixed:

01 = arg;nax T (a,(2),0)

= arg;nax E,, (2 logp(z, 2|0)].

This iterative process guarantees monotonic improvement of log p(x|0)
until convergence to some local maxima, because for each iteration ¢

logp(x|0,) = F(q,(2),6,) < ?(Qt(z)vetﬂ) < logp(:l:|9t+1).

E-step M-step

The EM algorithm can also be applied to maximum a posteriori with
a prior distribution p(@) over the parameters. This simply amounts
to a modified lower bound objective F:

F(q(2),0) = F(4(2),0) + logp(6) < logp(z|0)p(8).

Extensions and Connections

Variational EM
One of the basic assumption we have made in EM is that we can easily
evaluate ¢,(2z) = p(z|x, 8,) in the E-step.



However, evaluating the posterior p(z|x, 0,) itself could be intractable,
especially if z is a continuous r.v. We can instead use variational inference
(VI) to pick g, such that
q,(2) = argmax Dy (¢(2) | p(z[,0)),
qeQ
where @) is the variational family. Intuitively, we pick a distribution
q,(z) € Q that can best approximate the exact posterior p(z|x, ).

This approach, unfortunately, does not guarantee monotonic improve-
ment of logp(x|@) due to approximation errors. Only when the varia-
tional family @ is sufficiently versatile such that p(z|x, 8) € Q can we
(in theory) recover the behaviors of regular EM.

Stochastic Gradient EM
Another basic assumption we have made in EM is that we can compute

0,., = argmaxg F (q,(2), 0) in the M-step.

For many practical problems, however, such maximization is not easy.
Fortunately, note that in the M-step, as long as we can find some 6, ,
that guarantees

F(q:(2),0;) < ?(qt(z)70t+1)7

the monotonic improvement of log p(x|0) (and hence convergence) still
holds. Therefore, we can find 6,  ; by taking one or a few gradient ascent
steps following V5

0,1 =06, + nVeT (q:(2),0,).

The varational auto-encoders (VAEs) (Kingma & Welling, 2013) can
be interpreted as an instance of variational stochastic gradient EM.

However, EM becomes less appealling when there is no close form for
the M-step, as one might just as well directly optimize log p(x|€) using
gradient-based methods. Particularly, one can show that

Vologp(x|0,) = VT (q,(2),6,).
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