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Expectation maximization (EM) (Dempster et al., 1977) is designed
for maximum likelihood estimation of parameters in probabilistic models
with missing data or hidden variables.

Let {𝒙𝑛} denote the set of observed data, and {𝒛𝑛} the set of hidden
data. We want to maximize the likelihood w.r.t. the observed data:

arg max
𝜽

∑
𝒙𝑛

log 𝑝(𝒙𝑛|𝜽)

= arg max
𝜽

∑
𝒙𝑛

log(∫ 𝑝(𝒙𝑛, 𝒛𝑛|𝜽) d𝒛𝑛),

where 𝑝(𝒙|𝜽) is known as the incomplete-data likelihood, and 𝑝(𝒙, 𝒛|𝜽)
is known as the complete-data likelihood.

Evidence Lower Bound
Unfortunately, this maximization is generally intractable, because of the
log ∫ 𝑝(𝒙, 𝒛|𝜽) d𝒛 term.

We can bypass the intractability by transforming log 𝑝(𝒙|𝜽) as follows:

log 𝑝(𝒙|𝜽) = 𝔼𝑞(𝒛)[log 𝑝(𝒙|𝜽)]

= 𝔼𝑞(𝒛)[log(𝑝(𝒙, 𝒛|𝜽)/𝑝(𝒛|𝒙, 𝜽))]

= 𝔼𝑞(𝒛)[log 𝑝(𝒙, 𝒛|𝜽)
𝑞(𝑧)

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℱ(𝑞(𝒛),𝜽)

+ 𝔻KL(𝑞(𝒛) ‖ 𝑝(𝒛|𝒙, 𝜽)),



where ℱ(𝑞(𝒛), 𝜽) is known as the evidence lower bound (ELBO). We have

ℱ(𝑞(𝒛), 𝜽) ≤ log 𝑝(𝒙|𝜽)

for any 𝑞(𝒛) and 𝜽, with equality holding iff 𝑞(𝒛) = 𝑝(𝒛|𝒙, 𝜽).

The EM algorithm then maximizes log 𝑝(𝒙|𝜽) by instead maximizing
the lower bound ℱ(𝑞(𝒛), 𝜽) iteratively. For each iteration 𝑡, we perform
coordinate ascent on ℱ(𝑞(𝒛), 𝜽) alternating between 𝑞(𝒛) and 𝜽.
• In the E-step, we maximize ℱ(𝑞(𝒛), 𝜽) with 𝜽 = 𝜽𝑡 fixed:

𝑞𝑡(𝒛) = arg max
𝑞(𝒛)

 ℱ(𝑞(𝒛), 𝜽𝑡) = 𝑝(𝒛|𝒙, 𝜽𝑡).

• In the M-step, we maximize ℱ(𝑞(𝒛), 𝜽) with 𝑞(𝒛) = 𝑞𝑡(𝒛) fixed:

𝜽𝑡+1 = arg max
𝜽

 ℱ(𝑞𝑡(𝒛), 𝜽)

= arg max
𝜽

 𝔼𝑞𝑡(𝒛)[log 𝑝(𝒙, 𝒛|𝜽)].

This iterative process guarantees monotonic improvement of log 𝑝(𝒙|𝜽)
until convergence to some local maxima, because for each iteration 𝑡

log 𝑝(𝒙|𝜽𝑡) = ℱ(𝑞𝑡(𝒛), 𝜽𝑡)⏟⏟⏟⏟⏟
E-step

≤ ℱ(𝑞𝑡(𝒛), 𝜽𝑡+1)⏟⏟⏟⏟⏟⏟⏟
M-step

≤ log 𝑝(𝒙|𝜽𝑡+1).

The EM algorithm can also be applied to maximum a posteriori with
a prior distribution 𝑝(𝜽) over the parameters. This simply amounts
to a modified lower bound objective ℱ̃:

ℱ̃(𝑞(𝒛), 𝜽) = ℱ(𝑞(𝒛), 𝜽) + log 𝑝(𝜽) ≤ log 𝑝(𝑥|𝜽)𝑝(𝜽).

Extensions and Connections

Variational EM
One of the basic assumption we have made in EM is that we can easily
evaluate 𝑞𝑡(𝒛) = 𝑝(𝒛|𝒙, 𝜽𝑡) in the E-step.



However, evaluating the posterior 𝑝(𝒛|𝒙, 𝜽𝑡) itself could be intractable,
especially if 𝒛 is a continuous r.v. We can instead use variational inference
(VI) to pick 𝑞𝑡 such that

𝑞𝑡(𝒛) = arg max
𝑞∈𝒬

 𝔻KL(𝑞(𝒛) ‖ 𝑝(𝒛|𝒙, 𝜽)),

where 𝑄 is the variational family. Intuitively, we pick a distribution
𝑞𝑡(𝒛) ∈ 𝒬 that can best approximate the exact posterior 𝑝(𝒛|𝒙, 𝜽).

This approach, unfortunately, does not guarantee monotonic improve-
ment of log 𝑝(𝒙|𝜽) due to approximation errors. Only when the varia-
tional family 𝑄 is sufficiently versatile such that 𝑝(𝒛|𝒙, 𝜽) ∈ 𝒬 can we
(in theory) recover the behaviors of regular EM.

Stochastic Gradient EM
Another basic assumption we have made in EM is that we can compute
𝜽𝑡+1 = arg max𝜽 ℱ(𝑞𝑡(𝒛), 𝜽) in the M-step.

For many practical problems, however, such maximization is not easy.
Fortunately, note that in the M-step, as long as we can find some 𝜽𝑡+1
that guarantees

ℱ(𝑞𝑡(𝒛), 𝜽𝑡) ≤ ℱ(𝑞𝑡(𝒛), 𝜽𝑡+1),

the monotonic improvement of log 𝑝(𝒙|𝜽) (and hence convergence) still
holds. Therefore, we can find 𝜽𝑡+1 by taking one or a few gradient ascent
steps following ∇𝜽ℱ:

𝜽𝑡+1 = 𝜽𝑡 + 𝜂∇𝜽ℱ(𝑞𝑡(𝒛), 𝜽𝑡).

The varational auto-encoders (VAEs) (Kingma & Welling, 2013) can
be interpreted as an instance of variational stochastic gradient EM.

However, EM becomes less appealling when there is no close form for
the M-step, as one might just as well directly optimize log 𝑝(𝒙|𝜽) using
gradient-based methods. Particularly, one can show that

∇𝜽 log 𝑝(𝒙|𝜽𝑡) = ∇𝜽ℱ(𝑞𝑡(𝒛), 𝜽𝑡).
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