Expectation Maximization

Yutao Chen

**Oct 106 2025

**Yutao Chen

**Oct 11 2025

Contents
Evidence Lower Bound1Extensions and Connections2
Variational EM

Expectation maximization (EM) (Dempster et al., 1977) is designed for *maximum likelihood* estimation of parameters in probabilistic models with *missing data* or *hidden variables*.

Let $\{x_n\}$ denote the set of observed data, and $\{z_n\}$ the set of hidden data. We want to maximize the likelihood w.r.t. the observed data:

$$\begin{split} & \arg\max_{\pmb{\theta}} \sum_{\pmb{x}_n} \log p(\pmb{x}_n|\pmb{\theta}) \\ & = \arg\max_{\pmb{\theta}} \sum_{\pmb{x}_n} \log \biggl(\int p(\pmb{x}_n, \pmb{z}_n|\pmb{\theta}) \, \mathrm{d}\pmb{z}_n \biggr), \end{split}$$

where $p(x|\theta)$ is known as the *incomplete-data* likelihood, and $p(x, z|\theta)$ is known as the *complete-data* likelihood.

Evidence Lower Bound

Unfortunately, this maximization is generally intractable, because of the $\log \int p(x, z|\theta) \, \mathrm{d}z$ term.

We can bypass the intractability by transforming $\log p(x|\theta)$ as follows:

$$\begin{split} \log p(\boldsymbol{x}|\boldsymbol{\theta}) &= \mathbb{E}_{q(\boldsymbol{z})}[\log p(\boldsymbol{x}|\boldsymbol{\theta})] \\ &= \mathbb{E}_{q(\boldsymbol{z})}[\log(p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta})/p(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta}))] \\ &= \underbrace{\mathbb{E}_{q(\boldsymbol{z})}\bigg[\log\frac{p(\boldsymbol{x},\boldsymbol{z}|\boldsymbol{\theta})}{q(\boldsymbol{z})}\bigg]}_{\mathcal{F}(q(\boldsymbol{z}),\boldsymbol{\theta})} + \mathbb{D}_{\mathrm{KL}}(q(\boldsymbol{z}) \parallel p(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta})), \end{split}$$

where $\mathcal{F}(q(z), \theta)$ is known as the *evidence lower bound* (ELBO). We have

$$\mathcal{F}(q(\boldsymbol{z}), \boldsymbol{\theta}) \leq \log p(\boldsymbol{x}|\boldsymbol{\theta})$$

for any q(z) and θ , with equality holding iff $q(z) = p(z|x, \theta)$.

The EM algorithm then maximizes $\log p(x|\theta)$ by instead maximizing the lower bound $\mathcal{F}(q(z), \theta)$ iteratively. For each iteration t, we perform coordinate ascent on $\mathcal{F}(q(z), \theta)$ alternating between q(z) and θ .

• In the **E-step**, we maximize $\mathcal{F}(q(z), \theta)$ with $\theta = \theta_t$ fixed:

$$q_t(\boldsymbol{z}) = \mathop{\arg\max}_{q(\boldsymbol{z})} \mathcal{F}(q(\boldsymbol{z}), \boldsymbol{\theta}_t) = p(\boldsymbol{z} | \boldsymbol{x}, \boldsymbol{\theta}_t).$$

- In the M-step, we maximize $\mathcal{F}(q(\mathbf{z}), \boldsymbol{\theta})$ with $q(\mathbf{z}) = q_t(\mathbf{z})$ fixed:

$$\begin{split} \boldsymbol{\theta}_{t+1} &= \underset{\boldsymbol{\theta}}{\text{arg max}} \ \mathcal{F}(q_t(\boldsymbol{z}), \boldsymbol{\theta}) \\ &= \underset{\boldsymbol{\theta}}{\text{arg max}} \ \mathbb{E}_{q_t(\boldsymbol{z})}[\log p(\boldsymbol{x}, \boldsymbol{z} | \boldsymbol{\theta})]. \end{split}$$

This iterative process guarantees monotonic improvement of $\log p(x|\theta)$ until convergence to some *local* maxima, because for each iteration t

$$\log p(\boldsymbol{x}|\boldsymbol{\theta}_t) = \underbrace{\mathcal{F}(q_t(\boldsymbol{z}),\boldsymbol{\theta}_t)}_{\text{E-step}} \leq \underbrace{\mathcal{F}\big(q_t(\boldsymbol{z}),\boldsymbol{\theta}_{t+1}\big)}_{\text{M-step}} \leq \log p\big(\boldsymbol{x}|\boldsymbol{\theta}_{t+1}\big).$$

The EM algorithm can also be applied to *maximum a posteriori* with a prior distribution $p(\theta)$ over the parameters. This simply amounts to a modified lower bound objective $\tilde{\mathcal{F}}$:

$$\tilde{\mathcal{F}}(q(\boldsymbol{z}), \boldsymbol{\theta}) = \mathcal{F}(q(\boldsymbol{z}), \boldsymbol{\theta}) + \log p(\boldsymbol{\theta}) \le \log p(\boldsymbol{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}).$$

Extensions and Connections

Variational EM

One of the basic assumption we have made in EM is that we can easily evaluate $q_t(z)=p(z|x,\theta_t)$ in the E-step.

However, evaluating the posterior $p(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta}_t)$ itself could be intractable, especially if \boldsymbol{z} is a continuous r.v. We can instead use *variational inference* (VI) to pick q_t such that

$$q_t(\boldsymbol{z}) = \mathop{\arg\max}_{q \in \mathcal{Q}} \, \mathbb{D}_{\mathrm{KL}}(q(\boldsymbol{z}) \parallel p(\boldsymbol{z}|\boldsymbol{x}, \boldsymbol{\theta})),$$

where Q is the variational family. Intuitively, we pick a distribution $q_t(z) \in \mathcal{Q}$ that can best approximate the exact posterior $p(z|x, \theta)$.

This approach, unfortunately, does not guarantee monotonic improvement of $\log p(\boldsymbol{x}|\boldsymbol{\theta})$ due to approximation errors. Only when the variational family Q is sufficiently versatile such that $p(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta}) \in \mathcal{Q}$ can we (in theory) recover the behaviors of regular EM.

Stochastic Gradient EM

Another basic assumption we have made in EM is that we can compute $\theta_{t+1} = \arg\max_{\pmb{\theta}} \mathcal{F}(q_t(\pmb{z}), \pmb{\theta})$ in the M-step.

For many practical problems, however, such maximization is not easy. Fortunately, note that in the M-step, as long as we can find some θ_{t+1} that guarantees

$$\mathcal{F}(q_t(z), \boldsymbol{\theta}_t) \leq \mathcal{F}(q_t(z), \boldsymbol{\theta}_{t+1}),$$

the monotonic improvement of $\log p(x|\theta)$ (and hence convergence) still holds. Therefore, we can find θ_{t+1} by taking one or a few gradient ascent steps following $\nabla_{\theta} \mathcal{F}$:

$$\label{eq:theta_t} \boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \mathcal{F}(q_t(\boldsymbol{z}), \boldsymbol{\theta}_t).$$

The variational auto-encoders (VAEs) (Kingma & Welling, 2013) can be interpreted as an instance of variational stochastic gradient EM.

However, EM becomes less appealling when there is no close form for the M-step, as one might just as well directly optimize $\log p(x|\theta)$ using gradient-based methods. Particularly, one can show that

$$\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{x}|\boldsymbol{\theta}_t) = \nabla_{\boldsymbol{\theta}} \mathcal{F}(q_t(\boldsymbol{z}), \boldsymbol{\theta}_t).$$

REFERENCES

- Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society: Series B (Methodological)*, 39(1), 1–22.
- Kingma, D. P., & Welling, M. (2013,). Auto-Encoding Variational Bayes. *International Conference on Learning Representations*. https://openreview.net/forum?id=33X9fd2-9FyZd