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In machine learning, we are often tasked with updating the model para%
meters 𝜽 ∈ ℝ𝑑 to minimize some objective function 𝐽(𝜽) : ℝ𝑑 ↦ ℝ.

Gradient descent tells us to update 𝜽 in the direction of the negative
gradient, that is

𝜽𝑡+1 = 𝜽𝑡 − 𝜂∇𝐽(𝜽𝑡),

where 𝜂 is commonly known as the learning rate.

Lagrangian Method
Directly minimizing the black%box objective 𝐽(𝜽) is intractable in gen%
eral. We instead consider a linear approximation of 𝐽(𝜽) around 𝜽𝑡 using
the first%order Taylor expansion:

𝐽(𝜽) ≈ 𝐽(𝜽𝑡) + ∇𝐽(𝜽𝑡)
⊤(𝜽 − 𝜽𝑡).

We minimize the linear approximation of 𝐽(𝜽) with a squared Euclidean
distance penalty ‖𝜽 − 𝜽𝑡‖2

2:

arg min
𝜽

 𝐽(𝜽𝑡) + ∇𝐽(𝜽𝑡)
⊤(𝜽 − 𝜽𝑡) + (2𝜂)−1‖𝜽 − 𝜽𝑡‖2

2,

where the learning rate 𝜂 controls the inverse strength of the penalty.
Intuitively, the penalty discourages large updates as the linear approxi%
mation might only hold in the vicinity of 𝜽𝑡.

Setting the gradient of the optimization objective above to zero, we have

0 = ∇𝐽(𝜽𝑡) + 𝜂−1(𝜽∗ − 𝜽𝑡)
⟹ 𝜽∗ = 𝜽𝑡 − 𝜂∇𝐽(𝜽𝑡).



Riemannian Manifold
By far, we have assumed a Euclidean parameter space Θ such that
∀𝜽, 𝜽′ ∈ Θ, the squared distance between two parameters 𝐷(𝜽, 𝜽′) is

𝐷(𝜽, 𝜽′) = ‖𝜽 − 𝜽′‖2
2 = (𝜽 − 𝜽′)⊤(𝜽 − 𝜽′).

However, in general the parameter space Θ is not Euclidean. For
example, one can parametrize the variance of a univariate Gaussian
distribution by letting 𝜽 = 𝜎2, 𝜽 = 𝜎, or 𝜽 = log 𝜎 (and more). Depen%
dending the chosen parametrization, updating 𝜽 by the same constant 𝑐

𝜽𝑡+1 = 𝜽𝑡 − 𝑐

will result in very different distributions.

More generally, one can consider the parameter space as a Riemannian
manifold. The squared distance between two parameters 𝜽 and 𝜽′ on a
Riemannian manifold¹ is

𝐷(𝜽, 𝜽′) = (𝜽 − 𝜽′)⊤𝐺(𝜽)(𝜽 − 𝜽′),

where the Riemannian metric tensor 𝐺(𝜽) ∈ ℝ𝑑×𝑑 is a symmetric and
positive definite matrix depending on 𝜽. Note that the Euclidean space
corresponds to a special case where 𝐺(𝜽) = 𝑰 .

Amari (1998) showed that the steepest descent on a Riemannian mani%
fold is given by

𝜽𝑡+1 = 𝜽𝑡 − 𝜂𝐺−1(𝜽𝑡)∇𝐽(𝜽𝑡).

Particularly when 𝐺(𝜽) is the Fisher information matrix (FIM), this is
known as the [[Natural Gradient Descent]].
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¹Strictly speaking, in the tangent space of the Riemannian manifold at 𝜽.
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