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Natural gradient descent (NGD) (Amari, 1998) is a second-order opti-
mization method for parametrized probability distributions p(x|0):

0,1 =06, — nF~1(0,)VJ(0,),

where F~1(8,) is the inverse of the Fisher information matrix (FIM).

Definition 1 (Fisher Information Matrix)

The Fisher information matrix F'(6) for p(x|@) is defined as the
variance of the score function Vg logp(z|0)*:

F(60) = E,,10)[(Vologp(z]6))(Velogp(x|6)) ],
or equivalently the negative expected Hessian of the log likelihood

F(0) = —E, ;9 [V5 logp(z|0)].

Kullback-Leibler Divergence
Recall that [[Gradient Descent]] can be derived from

arg;nin J(0,)+VJ(@6,) (0—8,)+ (20" |6—6,]3

which penalizes large updates by measuring the (squared) Euclidean
distance ||@ — 0, |3 between parameter.

'The expectation of the score function E,,16)[Vg log p(z|0)] = 0.
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https://chnyutao.github.io/notes/optimization/gradient-descent.pdf

For probabilistic models, however, the parameter space is generally not
Euclidean. Instead, a more natural penalty would be measuring the
Kullback-Leibler (KL) divergence between the induced distributions:

argemin J(0,) + VJ(Bt)T(G —6,) + nleKL(p(wlé’t) | p(|6)).

Unfortunately, Dy (p|g) do not have an analytical form in general.
We instead consider its second-order Taylor approximation. Let f(0) =
Dy, (p(x|60,) | p(x|@)) and 66 = 6 — ,, and we have

f(0) ~ £(6,) +Vf(0,)" 56+ %aeTw £(6,)56.

1. The first term is trivially zero as

f(8,) = Dy (p(2]6,) | p(|6,)) = 0.
2. The second term is also zero as

V(6,) = Emw [velogm 0)],

where V and [ are exchangeable by the Leibniz integral rule.
3. The third term is non-zero. However, note that by Definition 1

V2£(6,) = ~Eyui, | V3 logp(alo)] ., |

Therefore, we have Dy (p(z|0,) | p(z|0)) ~ 2607 F(6,)86. Plugging
back into the optimization objective, we have

argmin J(0,) + V.J(0,)' 60 + (2n)~ 1607 F(6,)60,
06

which can be solved by 8* = 0, — nF~1(0,)VJ(,).



Efficiency and Approximations

A major drawback of NGD is that computing and inverting the FIM
is expensive. Therefore, efficient approximation methods or alternative
routines have been of particular research interests.

Empirical Fisher
Recall that FIM can be defined as the variance of the score function

F(0) = E,,0 [(Vologp(z]6))(Velogp(z(6))].

Empirical Fisher proposes to approximate FIM by replacing p(x|0) with
the empirical distribution p,,(x), where 2 is a dataset:

F(0) ~ —— > (Vglogp(x|0))(Velogp(z|6))".
|Z)| zeD

Exponential Family Distributions
For an exponential family distribution with natural parameters A and
corresponding moment parameters p, one can show that

FA)'VAL(A) =V, 4(p).

That is, the natural gradient w.r.t A equals the regular gradient w.r.t. p.

This result, under certain circumstances, conveniently allows perform-
ing NGD without actually computing FIM. We refer the readers to Khan
& Rue (2023) and Murphy (2023) Section 6.4.5 for more context.
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